
Tiny Book of Simple Cryptography by Alfred Thompson is licensed under CC BY-NC-SA 4.0 To view a copy

of this license, visit https://creativecommons.org/licenses/by-nc-sa/4.0

Tiny Book of Simple Cryptography

Alfred C Thompson II

http://www.acthompson.net/TinyCrypto.pdf
http://www.acthompson.net/
https://creativecommons.org/licenses/by-nc-sa/4.0

P a g e | i Tiny Book of Simple Cryptography

Contents
Introduction .. 1

Caesar Cipher .. 2

Introduction .. 2

Encrypting ... 2

Decrypting ... 2

Cryptography Issues .. 2

Project Suggestions ... 3

Vigenère cipher ... 4

Introduction .. 4

Encrypting ... 4

Decrypting ... 4

Cryptography Issues .. 4

Project Suggestions ... 5

One Time Pad .. 6

Introduction .. 6

Encrypting ... 6

Decrypting ... 6

Cryptography Issues .. 6

Project Suggestions ... 6

Polybius Square ... 8

Introduction .. 8

Encrypting ... 9

Decrypting ... 10

Cryptography Issues .. 10

Project Suggestions ... 10

PigPen Cipher .. 11

Introduction .. 11

Encrypting ... 11

Decrypting ... 12

Cryptography Issues .. 12

Project Suggestions ... 12

P a g e | ii Tiny Book of Simple Cryptography

Columnar transposition cipher ... 13

Introduction .. 13

Encrypting ... 13

Decrypting ... 14

Cryptography Issues .. 14

Project Suggestions ... 14

Keyword Columnar Transposition Cipher ... 15

Introduction .. 15

Encrypting ... 15

Decrypting ... 16

Cryptography Issues .. 16

Project Suggestions ... 16

Random Block Transposition Cipher ... 17

Introduction .. 17

Encrypting ... 17

Decrypting ... 17

Cryptography Issues .. 17

Project Suggestions ... 17

Steganography .. 18

Encrypting ... 18

Introduction .. 18

Decrypting ... 18

Cryptography Issues .. 18

Project Suggestions ... 18

Bacon’s Cipher .. 20

Introduction .. 20

Encrypting ... 20

Decrypting ... 21

Cryptography Issues .. 21

Project Suggestions ... 21

Code Samples .. 23

Introduction .. 23

Padding a string with random letters ... 23

P a g e | iii Tiny Book of Simple Cryptography

Creating an array of numbers in a random order ... 23

Determining the ordinal position of a letter ... 24

Building a String Representation of a Binary ASCII value ... 24

Determine if a letter is uppercase or lowercase ... 24

Appendix ... 25

Frequency of Letters in English ... 25

Non-English Alphabets .. 25

P a g e | 1 Tiny Book of Simple Cryptography

Introduction
Modern cryptography is filled with complicated algorithms, intricate mathematics, and sophisticated

software. It was not always the case. Before the age of computers many, simpler, encryption methods

were in use. In this booklet, we will look at some older methods and explore writing code to encrypt and

decrypt messages.

Some of these are known as Substitution ciphers1 which means that letters, individually or as a group

are replaced with other letters. There are substitution ciphers where letters are replaced with other

symbols or numbers as well. For example, ASCII 2is a cipher that replaces letters and other characters

with numbers.

Other simple ciphers are transposition ciphers3. In transposition ciphers letters are moved around

according to a pre-determined pattern.

Throughout this booklet are footnotes that link to articles on Wikipedia that provide more information

about the topics under discussion. These may be used as a starting point for more research and more

details.

This booklet is intended as a starting point for experimentation and further learning. It is not intended as

a definitive work.

1 https://en.wikipedia.org/wiki/Substitution_cipher
2 https://en.wikipedia.org/wiki/ASCII
3 https://en.wikipedia.org/wiki/Transposition_cipher

https://en.wikipedia.org/wiki/Substitution_cipher
https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Transposition_cipher

P a g e | 2 Tiny Book of Simple Cryptography

Caesar Cipher4

Introduction
The Caesar cipher is one of the oldest and most well-known cipher. While it may or may not have been

invented by Caesar it became famous as something he used frequently. The cipher is simple in that each

letter is replaced by a letter some number of positions after it in the alphabet. Caesar rotated the letters

by 3 so that today we would replace the letter A with the letter D, the letter B with E, and so on.

The number used to encrypt a message is a shared secret. A shared secret is something that the sender

and received both know but that no one else knows. Shared secrets must be shared before messages

can be sent. This is a weakness of many ciphers.

Encrypting
Encrypting a message becomes a matter of knowing the ordinal position of a letter, adding the offset,

and replacing the original letter with the letter at the indicated position. What if the position indicated

is beyond the count of letters in the alphabet? In that case we start over at the beginning. Modulus

arithmetic can help us there. The modulus operation returns the remainder of a division operation. For

example, if we add 13 to position 16 (T) we get 29 which is beyond the number of letters in the English

alphabet. 29 modulus 26 (the number of letters in our alphabet) returns 3 which leads us to D (A would

be 0).

The formula is Location = (Position + Offset) % 26

Decrypting
Decrypting an encrypted message is done by subtracting the offset from the encrypted value to get the

location of the original letter. Our problem here is that our location may be before the beginning of the

alphabet (less than zero). This means that we must check for the case of a negative location and use

that value to subtract from 26 to get the correct location.

Cryptography Issues
There are several issues with this cipher than keep it from being secure in a modern world. The first

problem, which it shares with many substitution ciphers, is that it is susceptible to breaking though

letter frequency analysis. Some letters occur more frequently in writing than others. In English, E is the

most used letter. The letter Z is used least frequently (there is a table showing frequency in the

appendix). We can count the number of occurrences of each letter in an encrypted message. Given a

large enough sample we can make some good assumptions about what letter is replacing what other

letter. With the Caesar cipher we can deduce the rotation based on the letters we believe we have

identified and so decrypt the rest of the message.

Modern computers give us our second easy way to break this encryption. There are only 25 possible

rotations. Zero and 26 are the same as not encrypting at all. A simple program that implements all 25

possibilities will quickly show a clear plaintext result. The following image shows one implementation.

We can easily see that the encrypting here used a rotation of 10 characters.

4 https://en.wikipedia.org/wiki/Caesar_cipher

https://en.wikipedia.org/wiki/Caesar_cipher

P a g e | 3 Tiny Book of Simple Cryptography

The fact that secrets must be shared and that someone may discover the secret is also an issue as it is

with any cipher that requires shared secrets.

Project Suggestions
1. Write a program to encrypt and decrypt using the Caesar cipher.

a. Include options to enter either plaintext or encrypted messages

b. Include an option to set the number of characters to rotate letters

2. Write a program to count the letters in the text in a data file. Compare those counts with the

chart in the appendix.

P a g e | 4 Tiny Book of Simple Cryptography

Vigenère cipher5

Introduction
As we have seen, the Caesar cipher is both easy to use and easy to break. The Vigenère cipher takes the

Caesar cipher a big step further and was considered unbreakable for hundreds of years. This cipher

rotates each letter by a different number of places. The rotation values are determined by a key,

normally a phrase, that both the sender and receiver agree to in advance. Another shared secret.

Encrypting
The ordinal position for each letter is used as the rotation factor for the corresponding letter in the plain

text. For example, in the figure below, S or 18 is the offset for the letter T in the plaintext which gives us

the letter L. The letter A, the second letter in the key string, is in position zero so the second letter in the

plaintext, H, is not changed at all. This is not considered a problem as anyone intercepting the message

would assume that the letter had been changed.

If the key phrase has fewer letters than the plaintext being encrypted, the phrase is used repeatedly

until the whole message is encrypted. Longer keys create messages that are harder to break.

Decrypting
The key phrase is used to decrypt the message once it has been received. Therefore, both sender and

receiver must know the key.

Cryptography Issues
These messages are usually written with all letters in either upper or lower case. Having mixed case

letters gives information about which letters may indicate the start of words such as the first word in a

sentence or the start of a proper noun. Spaces also give away information about the size and number of

words in a message. Encrypted messages are more secure if spaces are removed from the message.

Keys must be shared in advance or transmitted in some other secure manner. This can complicate the

use of the code because it makes it hard to use the code with new senders or receivers.

5 https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher

https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher

P a g e | 5 Tiny Book of Simple Cryptography

Modern super computers can break this cipher though several proven attacks. It will probably be safe

from casual readers but not from a major organization or government.

Project Suggestions
1. Write a program to encrypt and decrypt messages using the Vigenère cipher.

P a g e | 6 Tiny Book of Simple Cryptography

One Time Pad

Introduction
The one-time pad6 is generally considered the unbreakable code. At least within some given constraints

discussed below in Cryptography Issues. The concept is that the message is encrypted using a set of

random numbers with the set being the same length as the plain text message. A set of random

numbers is used only once which is what gives this cypher its name.

Encrypting
Encrypting using a one-time pad is very similar to encoding using a Vigenère cipher except that the

rotations are determined by the numbers in the one-time pad and not from a keyword.

Decrypting
Decrypting a crypto text that was encoded using the one-time pad requires that the same one-time pad

that was used to encode the message is used to determine the rotation of letters to recover the

plaintext.

Cryptography Issues
This cipher is useful only of both the sender and receiver have the same set of numbers or pad. This

means that some way of passing this information along securely is possible. If a third party were to get a

copy of the pad the code is insecure and can not be used. Also, the set of numbers has to be truly

random. This is a difficult problem7. Computer generated lists of random numbers are not truly random.

They are technically referred to as pseudo random. They are random enough for many uses but not for

cryptography or other applications like lotteries where true random numbers are necessary.

There are several websites on the internet that promise to provide truly random sets of numbers and

two of them are listed here.

• https://www.random.org/integers/

• https://numbergenerator.org/true-random-numbers

Trusting internet websites for random numbers for cryptography is a risky venture and companies and

governments who depend on security often have their own sources of random numbers. These websites

provide lists that can be used for testing program code and for casual use. There are ways of verifying

the randomness of numbers that can be used.8 That is beyond the scope of this book.

Project Suggestions
Create a program that encodes a plain text message using a list of random number read from a file. Strip

spaces from the plaintext before encoding. The program must read at least as many numbers as the

plaintext is long. The program must also be able to decode a message using the same list of random

numbers.

Option: Most pseudo random number routines will generate a list of numbers based on a seed value.

Calling the routine twice with the same seed will result in duplicate lists. This is a possible way of

6 https://en.wikipedia.org/wiki/One-time_pad
7 https://en.wikipedia.org/wiki/Random_number_generation
8 https://en.wikipedia.org/wiki/Random_number_generation#Post-processing_and_statistical_checks

https://www.random.org/integers/
https://numbergenerator.org/true-random-numbers
https://en.wikipedia.org/wiki/One-time_pad
https://en.wikipedia.org/wiki/Random_number_generation
https://en.wikipedia.org/wiki/Random_number_generation#Post-processing_and_statistical_checks

P a g e | 7 Tiny Book of Simple Cryptography

creating a program if you don’t have easy access to files with lists of random numbers. It is not a secure

method and should not be used for serious cryptography.

P a g e | 8 Tiny Book of Simple Cryptography

Polybius Square

Introduction
The Polybius9 Square10 was discovered by Greek scholars named Cleoxenus and Democleitus and

made famous by the historian Polybius. It was used to send messages more easily. The basic idea is a 5

by 5 grid holding the letters of the alphabet. The letters were identified by the x and y coordinate

numbers. Polybius used the Greek alphabet with 24 letters which fit nicely in a 5 by 5 grid. Α (alpha) was

11. Ω (Omega) was 54.

 1 2 3 4 5

1 Α Β Γ Δ Ε

2 Ζ Η Θ Ι Κ

3 Λ Μ Ν Ξ Ο

4 Π Ρ Σ Τ Υ

5 Φ Χ Ψ Ω

The English alphabet has 26 letters which doesn’t fit so the same box is often used for the letters “I” and

“j”. Each letter is then represented by a two-digit number that identifies its location in the square.

 1 2 3 4 5

1 A B C D E

2 F G H I/J K

3 L M N O P

4 Q R S T U

5 V W X Y Z

Alternatives to “I” and “j” are the letters “C” and “K” sharing a box, but other pairs can be used as well

by prior agreement.

9 https://en.wikipedia.org/wiki/Polybius_square
10 Phttps://crypto.interactive-maths.com/polybius-square.html

https://en.wikipedia.org/wiki/Polybius_square
https://crypto.interactive-maths.com/polybius-square.html

P a g e | 9 Tiny Book of Simple Cryptography

In some cases, a 6 by 6 square that includes the digits zero through nine is used. This also avoids the

need for two letters to share a box as well as avoiding the need to spell out numbers.

 1 2 3 4 5 6

1 A B C D E F

2 G H I J K L

3 M N O P Q R

4 S T U V W X

5 Y Z 0 1 2 3

6 4 5 6 7 8 9

Six by six grids are also used for alphabets that have more than 25 or 26 letters. Russian has 33 letters

for example.

In the case of the 6 by 6 English square the letter “A” is identified by 11. The number “1” is identified by

54. The letter “O” is identified by the number 33.

Having the square in a standard order is easy and was the originally way squares were used but to hide a

message we want something different.11 Using a keyword and ignoring any duplicate letters is one

possible way and probably the most common. Other potential ways to build a square include reversing

the alphabet or sharing a randomly generated square. The figure below uses the keyword “Polybius” as

the beginning of the square with the rest of the alphabet following without duplicating any letters from

the keyword. As shown in the next figure.

 1 2 3 4 5 6

1 P O L Y B I

2 U S A C D E

3 F G H J K M

4 N Q R T V W

5 X Z 0 1 2 3

6 4 5 6 7 8 9

Encrypting
The first step in encrypting a message is to build the Polybius Square. The letters of the keyword are

entered in to grid first followed by the rest of the alphabet, being sure not to duplicate letters. Each

11 https://en.wikipedia.org/wiki/Polybius#Cryptography

https://en.wikipedia.org/wiki/Polybius#Cryptography

P a g e | 10 Tiny Book of Simple Cryptography

letter in the plaintext is located in the square and the x and y coordinates of that location are used to

represent the letter.

Using the square above the plaintext “SAMPLETEXT” becomes “11215200205133510433”.

Decrypting
Decrypting also starts with creating a square. The encoded message is broken into two-digit codes which

are further broken down to x and y coordinates and used to identify the original letter from the plain

text.

Cryptography Issues
Like any other single transposition, the Polybius Square is susceptible to frequency analysis. Modern

computers can also break it via brute force methods of trying all possible combinations. This encryption

has very limited use if real security is needed.

Project Suggestions
Creating a program to create and use a Polybius Square is a good project. A simple 5 by 5 square without

a keyword is the easiest first project.

Creating a Polybius Square using a keyword is more complicated than not using a keyword in the square.

This makes a good second project.

P a g e | 11 Tiny Book of Simple Cryptography

PigPen Cipher12

Introduction
One of the simplest and oldest methods of encoding messages is by replacing letters with other

symbols. After all, letters are really symbols for sounds. The PigPen cipher is one well-known example. It

has been called several other names over the years including the masonic cipher, Freemason's

cipher, Napoleon cipher, Templar Cipher, and tic-tac-toe cipher. Versions of it have been used at least as

early as the 16th century.

For example, the Knights Templar used a version based on the Templar Cross.

Templar Cipher

Other versions are based on grids or X shapes with additional items like dots.

Encrypting
The figure below shows one popular version of the PigPen cipher. Each section of the grids defines a

letter with a dot in the section differentiating the different grid.

PigPen Grid

The message is encoded by using the grid segment, empty of letters but including a dot if necessary, to

represent the letters that make up the message. For example, the letter A would be represented by the

lines for the top left of the first grid – A and B would be the lines for the top center of the grid - B. The

letter W would be the lines and a dot for the top section of the last X grid – W.

12 https://en.wikipedia.org/wiki/Pigpen_cipher

P a g e | 12 Tiny Book of Simple Cryptography

The alphabet looks like this: ABCDERGHIJKLMNOPQRSTUVWXYZ

A complete message would consist of the various symbols as displayed in the image below.

Coded Message with Decoded Result

Messages are encoded by referring to the diagrams, but some users may memorize the code. The

memorization is made easy by the general organization of the grids.

Decrypting
Decrypting a message is a matter of comparing the symbols to the encoding grid. Each symbol can be

compared to the grid and finding the corresponding part of the grid and reading the letter in that

location.

Cryptography Issues
The use of simple grids makes it easy to share the code as well as to encrypt and decrypt messages. It is

easy to reproduce a key for encrypting or decrypting messages if one knows the pattern used. For this

reason, many different patterns can be used. For example, grid X grid X would give a different result

than grid grid XX as was used in our example above. Other variations are moving the letter is a grid

down first and then across or using only grids with different numbers of dots in sections. Of course, the

pigpen method could be combines with other forms of substitution such as Caesar or Vigenère. In any

case, the receiver must know the patterns used in advance. If the patterns are not changed from time to

time the cipher becomes easier to decode (break).

Project Suggestions
There is a TrueType font of the PigPen symbols available at

https://fontstruct.com/fontstructions/show/447940/cipher_code It can be used to display encoded

messages. For example, the word “pigpen” could be displayed as pigpen. This font was used to

display encoded messages in this document.

Create your own pattern for encrypting messages. Use that pattern to send a message to someone else

and see if they can decrypt it.

https://fontstruct.com/fontstructions/show/447940/cipher_code

P a g e | 13 Tiny Book of Simple Cryptography

Columnar Transposition Cipher

Introduction
In a columnar transposition, plaintext letters are written out in rows and the encrypted message is built

by taking the letters from columns. The simplest form of this is the take the columns in order but more

secure ciphers process the columns in an order specified by a keyword or previously shares secret.

Encrypting
In this simple example (figure below) we are writing the message TESTMESSAGE in a four-by-four grid.

We are padding trailing spaces with the letter Z. In some variations, the end of the message is padded

with randomly selected letters. In other variations, not padding is used.

T E S T

M E S S

A G E E

The coded message would be TMAEEGSSETSE if we move down from the first column to the last in

order.

In the figure above I have written the message in lowercase but padded the string with uppercase

letters so that you could see the padded letters. Ideally you would use the same case for the padding as

you would use in the message itself to avoid giving a code breaker more information.

There are any number of ways of specifying the number of columns and the order in which they are to

be used to build the encrypted message. For example, a key word can be used where the number of

letters in the word indicates the number of columns, and the alphabetical order of the letters indicates

P a g e | 14 Tiny Book of Simple Cryptography

the order in which to process the columns. The number of columns and order could be shared in

advance as well.

Decrypting
Decrypting is the opposite process. One writes into the columns and reads across the rows. Two

dimensional arrays are ideal for programming this process. There are other ways of doing it and I leave

that to your imagination.

Cryptography Issues
This method of encrypting messages was in common use until the 1950s when computers made it

possible to try many combinations of columns in a relatively short period of time. As with other

methods, spaces and mixed case letters provide a potential code breaker with useful information. If the

message is prefixed with a key word that indicates the number of columns and the order in which to

process them breaking one instance of a code will often give away future instances that use different

key words.

Project Suggestions
1. Write a program to rearrange the letters in a message using a specified block size (number of

columns).

2. Write a program to rearrange the letters in a message using a number of columns and an order

to process them based on a key word.

P a g e | 15 Tiny Book of Simple Cryptography

Keyword Columnar Transposition Cipher

Introduction
A Keyword Columnar Transposition Cipher13 isa columnar transposition that moves columns based on a

shared key word or key phrase. Plaintext is written out under columns identified by a keyword or

phrase. The length of the keyword is the number of columns. An initial square with the key phrase

“amystery” might look like the figure below.

a m y s t e r y

t h e q u i c k

b r o w n f o x

j u m p s o v e

r t h e l a z y

d o g

The next step is to sort the columns based on the alphabetically sorted letters in the keyword. For

example, the “t” in “amystery” indicates the 5th column (position 4 when counting from zero) but is the

sixed letter in the work alphabetically. That means that the “t” column in the plaintext square becomes

the sixed (5th position) in the encrypted square.

Note that squares that are not filled by letters from the plaintext may be either left as empty spaces, as

here, or filled with random letters.

a e m r s t y y

t i h c q u e k

b f r o w n o x

j o u v p s m e

r a t z e l h y

d o g

The resulting grid can be read out either by rows or columns. Reading out by rows, the plaintext

“thequickbrownfoxjumpsoverthelazydog” using the keyword “amystery” would be encoded as

“tihcquekbfrownoxjouvpsmeratzelhyd o g”. Both the sender and the reciever have to know the

keyword and to read by rows or columns.

Encrypting
The first step in encoding a message is to remove the spaces, as is typical for coded messages, and to

build the grid. The message is written out row by row. The next step is to determine the alphabetical

13 https://en.wikipedia.org/wiki/Transposition_cipher#Columnar_transposition

https://en.wikipedia.org/wiki/Transposition_cipher#Columnar_transposition

P a g e | 16 Tiny Book of Simple Cryptography

order of the letters in the keyword/phrase. Then the columns are reordered based on the order of the

keyword letters. The message in the block is listed in order by row or column.

If programming, the most difficult part of the process may be tracking the order of the columns. There

are probably many possible ways to do this. One way is to build an array of two-character symbols, the

first character a letter from the keyword and the second an integer indication the original location of the

letter. This array can be sorted and the position in the array indicating the destination column and the

number indicating the source column.

Decrypting
Decoding is much the same as the encryption process. The grid in made using the encoded message. The

original and sorted order of the letters is used to reorganize the columns back to their unencoded

positions.

Cryptography Issues
This cipher can be broken by guessing at the number of columns, building squares, and looking for

anagrams. This method also lends itself to brut force methods that are practical with powerful

computers and good software.

Project Suggestions
Create a program that encodes and decodes a message using a keyword and associated columnar

transposition.

For more advanced work, allow a choice between outputting the cipher text by row or by column and

the user’s option.

P a g e | 17 Tiny Book of Simple Cryptography

Random Block Transposition Cipher

Introduction
Random number generators as used in most programs are not truly random. They are known as pseudo

random numbers14. While this has disadvantages for most cryptographic usage. They can be used for a

simple block transposition cipher. That is because if the program provides the random number routine

with a specified seed value the random number generator will calculate the same not quite random

values.

Encrypting
For this method a block size is selected. The letters in each block are rearranged in a random order. The

random order is determined by a specific pseudo random number generated with a specific seed. The

seed and the block size are shared secrets. As with other transposition ciphers, the plaintext is padded

with random letters to avoid spaces and other information that would provide extra information to

potential cipher breakers.

Decrypting
Decrypting involves using the same seed, shared secret, and the same pseudo random number

generator to build the same order of transpositions in the same size block to move letters to their

original position.

Cryptography Issues
Block sizes that are too small and which may be tried give too few possibilities for rearrangement.

Larger block sizes are harder to crack as there are more possibilities. Brute force methods of cracking are

still possible with fast computers.

Project Suggestions
Write a program that accepts a message with a block size and random number generator seed and

encrypts and decrypts as message

14 https://en.wikipedia.org/wiki/Pseudorandom_number_generator

https://en.wikipedia.org/wiki/Pseudorandom_number_generator

P a g e | 18 Tiny Book of Simple Cryptography

Steganography
Steganography “is the practice of concealing a file, message, image, or video within another file,

message, image, or video.15” Steganography hides the fact that there is a message. A file can be passed

around in various forms without anyone, in theory at least, knowing that information is being passed

along with it.

Encrypting

Introduction
There are many ways of hiding messages in an image. One way involves using the way that colors are

stored in images. Colors are stored in a combination of red, green, and blue. Each color, in the most

common form includes 255 levels of each of the three primary colors. The difference between 250 and

251 for one color is generally far too subtle for the casual viewer. We can take advantage of this to store

information using one bit in each pixel. For example, we can use the last bit of the color blue and eight

pixels to represent one ASCII character.

Our encoding routine would select a known location in the image to start the message. The first 8 pixels

might be used to represent the total number of characters in the message.

For each character, including the letter count, our program would build a pattern of ones and zeros. The

least bit in eight pixels would be set or left alone to match the pattern. Many bits would not be changed

because they were already set the way our message requires them to be. The fact that the decryption

program knows that the pixel is part of the message is all that is needed for this to work. Unchanged

pixels make detection more difficult.

One thing to make note of is that many forms of compression will make changes to the file that make it

almost impossible to recreate the hidden message. Image formats that use lossy compression16 to save

space will generally destroy the hidden message. Image formats like JPEG are examples of this. Using a

JPEG image is not going to be reliable.

Decrypting
Decrypting involves first knowing the message in the file and where to look for it. Once the location and

formatting of the message is known the decoding program checks the values that are stored and

constructs a legible message.

Cryptography Issues
Comparing a file with a message with the original file, before a message was encoded in it, will provide

many clues to the message hidden it.

Project Suggestions
1. Create a program to hide a message in an image file (recommended BMP or PNG).

15 https://en.wikipedia.org/wiki/Steganography
16 Lossy compression - Wikipedia

https://en.wikipedia.org/wiki/Steganography
https://en.wikipedia.org/wiki/Lossy_compression

P a g e | 19 Tiny Book of Simple Cryptography

a. Program should modify the bits in known locations of an image file and rewrite the new

modified file.

b. Program should read a file with an encoded message and decode it.

P a g e | 20 Tiny Book of Simple Cryptography

Bacon’s Cipher

Introduction
Bacon's cipher17 is a well-known and simple cipher. Its considered a form of

steganography18. Unlike most steganography, the code is hidden in the text and not an

image. The format is a 5-bit binary encoding where each letter of the plaintext is replaced by

a group of five of the letters 'A' or 'B'. This binary code has A as 00000 or "aaaaa" and Z is

11010 or "bbaba". There are variations and the original version used the same codes for the

letters "I" and "J" and for "U" and "V". The usual implementation is to use one type face for

"a" and a different type face for "b".

Often this is done with a serif and a sans serif font. One option, and the first one I use
below, uses italics and non-italics.

thequickbrownfoxesjumpedoverthelazy

One other option I have used is mixing upper-case and lower-case letters.

The QUicK brOwn FoXes JUmPed ovER tHe lAZy

One semi-famous example of the use of serif and Sans Serif fonts is the Cipher on the William

and Elizebeth Friedman tombstone.19 The biography of Elizebeth Friedman,The Woman Who
Smashed Codes: A True Story of Love, Spies, and the Unlikely Heroine Who Outwitted

America's Enemies20,is a seriously recommended read.

There are also examples of using this encoding in pictures of groups of people. Some
people facing straight ahead, and some turned to the side. Just about any possibility of two
different options would work. It’s a flexible system.

Encrypting

Encrypting a message requires a plaintext message where the secret message will be hidden.

Each letter in the secret message must be mapped to its A/B code. The plaintext message is then

modified so that each group of 5 letters is set to the appropriate mix of A or B indictors. Secret

messages traditionally do not include spaces because spaces make it easier to break encoded

messages into words. The plaintext may have spaces, but they will be left unchanged by the

encryption process. Spaces will be ignored during decoding as well.

The following table shows the various encoding using both A/B code and Binary codes.

17https://en.wikipedia.org/wiki/Bacon's_cipher
18 https://en.wikipedia.org/wiki/Steganography
19 https://www.elonka.com/friedman/
20 https://smile.amazon.com/Woman-Who-Smashed-Codes-Outwitted-ebook/dp/B01M0EOI6I/

https://en.wikipedia.org/wiki/Steganography

P a g e | 21 Tiny Book of Simple Cryptography

Letter Code Binary Letter Code Binary

A aaaaa 00000 N abbab 01101

B aaaab 00001 O abbba 01110

C aaaba 00010 P abbbb 01111

D aaabb 00011 Q baaaa 10000

E aabaa 00100 R baaab 10001

F aabab 00101 S baaba 10010

G aabba 00110 T baabb 10011

H aabbb 00111 U babaa 10100

I abaaa 01000 V babab 10101

J abaab 01001 W babba 10110

K ababa 01010 X babbb 10111

L ababb 01011 Y bbaaa 11000

M abbaa 01100 Z bbaab 11001

Decrypting
Decrypting involves viewing the groups of five characters, determining the A/B or 0/1 values, and

matching up with the appropriate letters. Spaces in the plaintext are ignored. Spaces may often be

removed before processing the text for a message.

Cryptography Issues

A cipher like this works best if the differences are not too obvious to the casual observer. The big

disadvantage of using mixed case letters is that it is not very subtle. It’s almost obvious that there

is something special going on. Italics are less noticeable. Serif and Sans Serif are even more

subtle.

This is not the sort of encryption that holds up to serious attack. It relies almost completely on

obscurity; of people not knowing there is a code at all.

Project Suggestions
Create a program to embed a message in a plaintext using a mix of uppercase and lowercase letters. The

program should be able to decrypt the message as well. The program requires a plaintext message

where the secret message will be hidden. The plaintext must have 5 times as many letters as the secret

message. This is a sample program screen.

P a g e | 22 Tiny Book of Simple Cryptography

One important piece of description is determining if a letter is uppercase or lowercase. In some systems,

Microsoft’s .NET Framework for example, the is an IsUpper method that will return true for uppercase

letters or false for lowercase letters. If you do not have such a method in the programming environment

you are using there is some information in the sample code chapter that may help. See Determine if a

letter is uppercase or lowercase.

P a g e | 23 Tiny Book of Simple Cryptography

Code Samples

Introduction
These samples were written and tested using the C# programming language and are provided for

reference with no guarantee they will work in your program or programming language.

Padding a string with random letters

 private string padString(string input, int size)
 {
 /* Create a string padded the a requested length
 * Inputs: Original string & Length of desired output string
 * Assumes adding to a string
 * Returns: New string with random letters as padding to length requested
 */
 string alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
 Random R = new Random();

 for (int i = input.Length - 1; i < size - 1; i++)
 {
 input += alphabet.Substring(R.Next(alphabet.Length), 1);
 }
 return input;
 }

Creating an array of numbers in a random order

 private int[] BuildKeys(int length, int seed)
 {
 /*
 * Builds a key string
 * Inputs: Length of key to create & Seed for random number generator
 * Output: integer array to be used as a key for encoding and decoding
 */
 Random r = new Random(seed); // Use seed value to start generator
 int[] working = new int[length]; // Create an array of the required length
 for (int index = 0; index < length; index++) // Initialize key array
 {
 working[index] = index;
 }
 // Shuffle the key array
 for (int index = 0; index < length; index++)
 {
 int temp = working[index];
 int swap = r.Next(length);
 working[index] = working[swap];
 working[swap] = temp;
 }
 return working;
 }

P a g e | 24 Tiny Book of Simple Cryptography

Determining the ordinal position of a letter

For English letters, the position in the alphabet of a letter can be done easily by

taking advantage of the ASCII codes. Using a Char data type the integer value of the char

subtracted by the integer value of the letter ‘a’ or ‘A’ results in what position in the

alphabet. This example assumes that c is a variable of type Char.

int x = (int)c - (int)'a';

An alternate way is to create a string of the letters in order and search for the

position of your letter in that string. Assuming s is a string variable with a single

letter stored in it.

 string alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
 int location = alphabet.IndexOf(s);

Building a String Representation of a Binary ASCII value

 string OnesAndZeros(char c)
 {
 /* builds as string of ones and zeros that represent the Binary ASCII value of a char
 * The Binary AND operator (&) is used to check the bit settings within the char
 */
 string output = "";
 if (((int)c & 128) != 0) output += "1"; else output += "0";
 if (((int)c & 64) != 0) output += "1"; else output += "0"; ;
 if (((int)c & 32) != 0) output += "1"; else output += "0"; ;
 if (((int)c & 16) != 0) output += "1"; else output += "0"; ;
 if (((int)c & 8) != 0) output += "1"; else output += "0"; ;
 if (((int)c & 4) != 0) output += "1"; else output += "0"; ;
 if (((int)c & 2) != 0) output += "1"; else output += "0"; ;
 if (((int)c & 1) != 0) output += "1"; else output += "0"; ;
 return output;
 }

Determine if a letter is uppercase or lowercase
If you do not have such a method available there is an easy way to determine if an ASCII value is

uppercase or lowercase. In ASCII, there are 32 characters between an uppercase letter and a lowercase

letter. For example, the uppercase A is 65 and the lowercase a is 97. This means that the 32 bit is set, or

1, for lowercase letters and unset, or 0, for uppercase letters. Many languages support operators that

support bit operations. In many languages the & sign [single & not to be confused with && which is a

Boolean AND] that lets a programmer compare values at the binary level. The following code uses the &

operator to see if the 32 bit is set.

 private Boolean isUpper(char c)
 {
 Boolean retCode = false;
 int check = c & 32;
 if (check == 0) retCode = true;
 return retCode;
 }

P a g e | 25 Tiny Book of Simple Cryptography

Appendix

Frequency of Letters in English21

e 13.0% m 2.4%

t 9.1% w 2.4%

a 8.2% f 2.2%

o 7.5% g 2.0%

i 7.0% y 2.0%

n 6.7% p 1.9%

s 6.3% b 1.5%

h 6.1% v 1.0%

r 6.0% k 0.8%

d 4.3% j 0.2%

l 4.0% x 0.2%

c 2.8% q 0.1%

u 2.8% z 0.1%

Non-English Alphabets
https://en.wikipedia.org/wiki/Letter_frequency#Relative_frequencies_of_letters_in_other_languages

Greek Alphabet22

Α α, Β β, Γ γ, Δ δ, Ε ε, Ζ ζ, Η η, Θ θ, Ι ι, Κ κ, Λ λ, Μ μ, Ν ν, Ξ ξ, Ο ο, Π π, Ρ ρ, Σ σ/ς, Τ τ, Υ υ, Φ φ, Χ χ, Ψ ψ,

and Ω ω.

Norwegian Alphabet23

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Æ Ø Å

Turkish Alphabet24

A B C Ç D E F G Ğ H I İ J K L M N O Ö P R S Ş T U Ü V Y Z

21 https://en.wikipedia.org/wiki/Letter_frequency#Relative_frequencies_of_letters_in_the_English_language

22 https://en.wikipedia.org/wiki/Greek_alphabet#Letter_shapes
23 https://en.wikipedia.org/wiki/Danish_and_Norwegian_alphabet
24 https://en.wikipedia.org/wiki/Turkish_alphabet#Letters

https://en.wikipedia.org/wiki/Letter_frequency#Relative_frequencies_of_letters_in_other_languages
https://en.wikipedia.org/wiki/%CE%91
https://en.wikipedia.org/wiki/%CE%92
https://en.wikipedia.org/wiki/%CE%93
https://en.wikipedia.org/wiki/%CE%94
https://en.wikipedia.org/wiki/%CE%95
https://en.wikipedia.org/wiki/%CE%96
https://en.wikipedia.org/wiki/%CE%97
https://en.wikipedia.org/wiki/%CE%98
https://en.wikipedia.org/wiki/%CE%99
https://en.wikipedia.org/wiki/%CE%9A
https://en.wikipedia.org/wiki/%CE%9B
https://en.wikipedia.org/wiki/%CE%9C
https://en.wikipedia.org/wiki/%CE%9D
https://en.wikipedia.org/wiki/%CE%9E
https://en.wikipedia.org/wiki/%CE%9F
https://en.wikipedia.org/wiki/Pi_(letter)
https://en.wikipedia.org/wiki/%CE%A1
https://en.wikipedia.org/wiki/%CE%A3
https://en.wikipedia.org/wiki/%CE%A4
https://en.wikipedia.org/wiki/%CE%A5
https://en.wikipedia.org/wiki/%CE%A6
https://en.wikipedia.org/wiki/%CE%A7
https://en.wikipedia.org/wiki/%CE%A8
https://en.wikipedia.org/wiki/%CE%A9
https://en.wikipedia.org/wiki/A
https://en.wikipedia.org/wiki/B
https://en.wikipedia.org/wiki/C
https://en.wikipedia.org/wiki/%C3%87
https://en.wikipedia.org/wiki/D
https://en.wikipedia.org/wiki/E
https://en.wikipedia.org/wiki/F
https://en.wikipedia.org/wiki/G
https://en.wikipedia.org/wiki/%C4%9E
https://en.wikipedia.org/wiki/H
https://en.wikipedia.org/wiki/Dotted_and_dotless_I
https://en.wikipedia.org/wiki/Dotted_and_dotless_I
https://en.wikipedia.org/wiki/J
https://en.wikipedia.org/wiki/K
https://en.wikipedia.org/wiki/L
https://en.wikipedia.org/wiki/M
https://en.wikipedia.org/wiki/N
https://en.wikipedia.org/wiki/O
https://en.wikipedia.org/wiki/%C3%96
https://en.wikipedia.org/wiki/P
https://en.wikipedia.org/wiki/R
https://en.wikipedia.org/wiki/S
https://en.wikipedia.org/wiki/%C5%9E
https://en.wikipedia.org/wiki/T
https://en.wikipedia.org/wiki/U
https://en.wikipedia.org/wiki/%C3%9C
https://en.wikipedia.org/wiki/V
https://en.wikipedia.org/wiki/Y
https://en.wikipedia.org/wiki/Z
https://en.wikipedia.org/wiki/Letter_frequency#Relative_frequencies_of_letters_in_the_English_language
https://en.wikipedia.org/wiki/Greek_alphabet#Letter_shapes
https://en.wikipedia.org/wiki/Danish_and_Norwegian_alphabet
https://en.wikipedia.org/wiki/Turkish_alphabet#Letters

